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Question 1 [15 marks] 

Let X be a set of real numbers. 

a) What is an upper bound of X? State the definition. [3] 

b) Let w € R be an upper bound of X and v € R such that u < v. Show that v is an 

upper bound of X. [5] 

c) Let U(X) denote the set of all upper bound of X. Is U(X) bounded above? Sub- 
stantiate your answer. 

Question 2 [15 marks] 

Let X be an infinite set of natural numbers. Consider 7:N — X with 

m(1) = minX, a(n +1) = min(X — {7(1),7(2),...,a7(n)}) for all nEN. 

a) How does one call this description of 7? Show that it does make sense. 

b) Prove that 7 is strictly increasing. 

c) Is a injective? Explain. 

Question 3 [14 marks] 

Consider the following sequence 

1 n+1 

b= (: ++ x) for alln EN. 
n 

a) Prove that this sequence is strictly decreasing. 

b) Is this sequence convergent? If it is convergent, determine its limit. 

c) Does this sequence have divergent subsequences? Explain. 
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Question 4 [13 marks] 

a) What is a series of real numbers? Explain this concept. [3] 

b) Let 53a, and >> by be series of real numbers. The summation starts at 1. 

So ak + So bi = So (a + by). 

k k 

i) Prove that 

k 

[5] 
ii) If }> a, and >> by are convergent, show that >>(a, + b,) is convergent and 

Co co co 

So (ae + by) = an + S> bg. 

k=1 k=1 k=1 
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Question 5 [15 marks] 

Let X CR. 

a) What is an accumulation point of X? State the definition. [3] 

b) Let a € R be an accumulation point of X such that a ¢ X. Prove that there exists 
a sequence in X which converges to a. What does one need to prove this? State 
the fact. [7] 

c) Show that every accumulation point of X belongs to the closure X of X. [5] 

Question 6 [14 marks] 

Let p:R — R be defined by p(z) := 27 +2+41. 

a) Show that p is strictly increasing. [3] 

b) Prove that p is surjective. [6] 

c) Show that p has exactly one zero. Verify that the zero of p is a number between —1 
and 0. [5] 
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Question 7 [14 marks] 

a) Let a,b € Rsuch that a < band let f:[a,b] — R bea function which is differentiable 
on (a,b) and continuous at a and b. 

i) What is the domain of the derivative f’ of f? Explain. [5] 

ii) If f’ =0, prove that f is constant. [5] 

b) If the derivative of a function is the zero function, is the function constant? Either 

prove that the function is constant or make a counterexample. [4] 

End of the question paper


